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Abstract 

We indicate how unstable particles can be introduced into the self-consistent field theory 
formulation of  Umezawa where the equal-time commutat ion relations for Heisenberg 
fields are derived and not  assumed. The Lee model is used to illustrate the results. 

1. Introduction 

In an earlier paper one of the authors (VS) with Rest and Umezawa (Rest 
et al., 1971) illustrated the main computational steps in a self-consistent 
formulation (Umezawa, 1965) of quantum field theory in which one uses 
only the Fock space of physical particles. The equal-time commutation rela- 
tions (ETCR) for Heisenberg fields are derived in this formulation in a self- 
consistent way (Rest et al., 1971; Seetharaman & Srinivasan, 1975). The field 
equations together with the requirement of  microcausality will show whether 
the initial choice of the physical fields is correct or not. For instance, it was 
shown for the pair model (Rest et al., 1971) that a separate field for the physi- 
cal N-O bound state (in addition to the physical N and 0 fietds) is necessary 
for microcausality. In the present short paper we indicate and demonstrate 
through a solvable model how unstable particles (Levy, 1959; Glaser & Kallen, 
1956; Schulman, 1970) can be incorporated into this scheme. Though vector 
spaces for unstable particles have been considered in the literature (Hammer 
& Weber, 1972), we emphasize that in this method there is no need to go 
beyond the conventional Fock space of physical particles. 

In the next section we mention briefly the main assumptions of  the self- 
consistent method and point out how composite and/or unstable particles 
are introduced. In the last section we illustrate the results through the Lee 
model. In order to save space we shall keep all calculations to the barest mini- 
mum and refer the reader to two earlier papers (Rest et al., 1971; Seetharaman 
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& Sfinivasan, 1975) where the method of calculation has been outlined in 
great detail. 

2. Unstable Particles in the Self-Consistent Method 

We shall start with a brief enumeration of the important postulates of the 
method: 

i. Equations of  motion for the interacting Heisenberg fields 4(0 (i, = 1 . . . . .  n) 
are assumed given. 

ii. With a proper choice of the physical fields qscJ) (] = 1 , . . . ,  m) a map 
(known as the dynamical map, Laplae et al., 1965) is constructed in which one 
expands the Heisenberg fields in terms of the normal products of  the physical 
fields with expansion coefficients to be determined from the field equations. 
Any invariance properties of  the field equations are of  great help in writing 
down such a map (Laplae et al., i974). It is important to note that the number 
rn of physical fields need not  always be equal to the number n of Heisenberg 
fields occurring in the equations of  motion. This is a point which we shall 
amplify below. The Fock space for the physical fields is constructed in the 
usual way. 

iii. The qJ(i)-s are taken to be the "in-fields" and hence the coefficients of 
the map are assumed retarded in nature, z 

iv. The Heisenberg fields obey microcausality. There exists a unitary trans- 
formation S that transforms a in into a T M  

a TM = S-1 gin S 

Here a in (gout) is the usual Fourier coefficient (annihilation operator) of the 
physical field ~in (¢out). 

The compositeness or instability of particles in this method is linked to the 
second postulate. I f  we have n Heisenberg fields (satisfying certain postulated 
equations) and m physical fields (satisfying free field equations with physical 
masses) which form a comptete set and if rn < n then we have (m - n) compo- 
site particles in the theory. In the pair model (Rest et al., 1971) one started 
with two Heisenberg fields, but at the " i n "  level three physical fields were 
found necessary for microcausality and thus one identified one of the fields as 
composite. On the contrary if m < n, i.e., the number of  physical fields that 
form a complete set is less than the number of  Heisenberg fields, then we have 
(n - m) unstable particles. Using the postulates it can also be easily shown that 
the unstable particle defined this way has no asymptotic field. 3 

3. Lee  Model with Unstable V Particle 

We postulate the following set of  equations of  the Lee-Dirac model: 

~-~ + imo ~P(y) = - i g fd4xa (x  - y )O*(x)V(y)  

z This is the  asympto t ic  condit ion.  

3 The p roof  o f  this jus t  involves the  use o f  the Re imann-Lebesgue  theorem.  

(3.i) 
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( ~7-+ i ~ ) O ( y ) = - i g f d 4 x ~ ( y -  x)~t(x)V(x)  (3.2) 
Ot / 

-~7 + iMO V(y) = - i g fd4xa(x -  y)O(x)~(F) 

Here the cut-off  function oe(x) is given by  

(3.3) 

~ f  O~ (~k---~) eilkllx--yl a(X -- y) = ~ (t x -- ty) d3k (2COk)l/2 (3.4) 

with co k = (k 2 + p~)l/z. 
We shall consider the V particle to be unstable 4 As explained earlier, that  

means that,  in the dynamical  map, the V in field does not  occur. The mapping 
for this can easily be found to be 

if(x) = ffin(x) +fd3pd3qd3rcp(q, -Fqr30in ?Nin' p* q - ~  ~ain 

eip'Xe--Fcor-coq+mp+q_r~t j . . X 
(3.5) 

O(x) = 0in(x) +fd3pd3qd3rgp(q, ~ arint Arin /lin 
• j~,q l , p + q - r v r  (3.6) 

X e i p ' x e - ' i ( m p + q - r + t o r - m q ) t  + • . • 

V(x) = f d3pd3qNi,~_qoiqnhp(q)eiWXe-i(c%+'%+q)t + ' . .  (3.7) 

Here 

~in(x)- ~ ~3/2 f d3kN~nei(k'x-mkt) 
tzrr) j 

(3.8) 

- 1____ ~ ;3 /r~  inoi(k.x._ook t) 
0in(x) (2rr)3/2J~, ~Vk¢ (3.9) 

and we assume 

Npin AFin'~] = [0iDn, 0glJ ' ]  = a ( p  --  q)  ~XVq j +  (3.10) 

We now have to determine all the unknowns in the above map and then 
check whether microcausali ty for the Heisenberg fields is satisfied. The map 
coefficient Cp, gp, hp, together with the masses of  the physical fields are 
determined by considering the matr ix elements of  the Heisenberg fields between 

4 It is not necessary to assume that the mass of the unstable particle M > ra + # at this 
stage. See below. 
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physical "in" states. We shall omit all details (see Seetharaman & Sriniyasan, 
1975) and give the results below: 

m l = m o = m ,  /./1 =/ /o =/A 

cu+t-:(s, t) = (2rr)3/2kcos / a(co~) cot,--- cos ----+ie 

= { co t' +(co,) 
gu+t-gs, t) (2~)3;2[cot+._,) ] a(co,) cot - co.+t-. + ie 

I f(co.)(2co.) 1/~ 
ht+.(u) - (2~)3/2 ga(co.) 

with 

and 

/(co.) =g' az(co.) 1 
2co~ 1 - g '  + (cou) 

g' = g 2  {'l d3 k t22(cok) 

cou + m - Mo ' I(cou)=J 2co-----ucou---- co--ku + ie 

The ie factor in the denominator is due to the retarded nature of the coef- 
ficients of the dynamical map. 

We now check whether the dynamical map we have obtained is consistent 
with microcausality. For this consider 

(Nlink I[~+(x ), 0(y)] tx=tyiOikn} 

Evaluating this we find that 

[(2@)3/~ {gp(1 + k, k) + C*+l(k, 1 + k)) 
] 

+fcl3rgp(1 + k, r)c*+l(k, p + 1 + k - r)l 

must be a finite polynomial in p (say J) for microcausality. Using the computed 
values of coefficients and the fact that 

and 

we find J to be 

with 

d3r = 47r(co2 -/,12)1/2codco 

f*(co)  - f ( c o )  = 8~z i  t f (co)i  2 co(co: - u ~) 1/2 

A(p, k) = 

J = A(p, k)(cop - <.ok)/ 

~ ( ~ k ) ~ ( ~ p )  1 
(27r)3 /2(4cop60k)  1/2 COk -- COp + ie 



UNSTABLE PARTICLES IN A SELF-CONSISTENT FIELD THEORY 427 

and 

f g'  dee 

/ t ( c °P '  C°k) = 1 -- g'I(co) (co -- COp)(CO -- cok) 
C 

Here C is the contour  in the co plane which encloses a cut along the positive 
real axis from c~ =/~ to co -- ~ .  I f  the contour  encloses a pole then it is easily 
seen that  J is not  a finite polynomial  and hence microcausali ty will be violated. 
If, however, there is no pole in the cut plane than l l  = 0 and hence micro- 
causality is preserved. This means that  1 - g'I(eo) :/: 0 in the cut plane, that is 
the coupling constant is such that  there is no pole on the real axis in cut plane. 
So i f  one were to  give a mass to the unstable particle,  the mass equation would 
read as 1 - g'I(M - m) = 0 implying M > m +/ t  (the pole is in the branch cut). 
The unstable particle has a complex mass. One can now compute the S matr ix  
and indeed verify that  the unstable particles appear as a pole in the second 
Reimann sheet. The ETCR for the Heisenberg fields can now be computed,  
after verifying that  microcausahty is satisfied in all sectors for the map obtained, 
and they are found to be the same as in the canonical field theory.  

One point  deserves special mention. In field theory there has been an attrac- 
tive hypothesis  due to Jouvet (Jouvet,  1956; Whippman, 1971; Lurie, 1968) 
of  the vanishing of  the wave function renormalization constant for identifying 
an elementary particle as a bound state. Our calculation seems to indicate that 
this conjecture could be sharpened. A particle is deemed to be a bound state 
if  z --> 0 but  its field appears in the physical set o f  fields. The dynamical  map 
together with Heisenberg equations give us the mass of  the bound state. On 
the other hand if  the particle is unstable,  again z -+ 0 but  in addit ion no field 
appears for the particle at the level o f  physical fields. Of course the micro- 
scopic causality condit ion plays a crucial rote in deciding whether the particle is 
unstable or bound in a given theory.  
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